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TimeDiff: Leveraging Differential Domain Representations
for Long Time Series Forecasting

Anonymous Authors1

Abstract
Time series forecasting poses significant chal-
lenges due to the non-stationarity and multi-scale
temporal dependencies inherent in the data. Ex-
isting approaches primarily focus on modeling in
the time domain and are often evaluated based
on their ability to capture overall trends, while
paying less attention to fine-grained changes in
the data. However, in many real-world scenar-
ios, the detailed variations in time series (i.e.,
its differences) are critical for decision-making.
To address this gap, we propose TimeDiff, a
novel framework for long time series forecast-
ing that enhances predictive accuracy by mod-
eling in the differential domain. By represent-
ing time series data as multi-level differences,
TimeDiff captures both short-term variations and
long-term trends across multiple temporal scales.
Extensive experiments demonstrate its state-of-
the-art performance: in 96.88% test scenarios,
TimeDiff-enhanced model surpasses its baseline
using identical hyperparameters and ranking first
in 20 different settings while the second-best ap-
proach only achieves the top spot in 6. Our work
highlights the potential of differential domain
modeling as a powerful paradigm for advancing
time series forecasting. The code is available
at: https://anonymous.4open.science/r/TimeDiff-
EFE3/

1. Introduction
Time series forecasting underpins a wide range of real-world
applications, including traffic flow (Lippi et al., 2013; Zheng
& Huang, 2020), weather prediction (Karevan & Suykens,
2020; Hewage et al., 2020), and financial trading (Sezer &
Ozbayoglu, 2018; Taylor, 2008). Despite their varied nature,
these domains share a common thread: the temporal dynam-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. Case study visualization of iTransformer and TimeDiff.
(a) shows the baseline iTransformer predictions. (b) illustrates
the improved results after incorporating TimeDiff. (c)–(d) depict
predictions in the differential domain with differencing lengths of
1 and 2, respectively.

ics within the data. Typically, most approaches emphasize
modeling time series purely in the time domain (Liu et al.,
2024; Nie et al., 2023; Wilson, 2017), seeking to capture
overarching trends over historical windows. However, a
crucial yet often overlooked aspect lies in the changes be-
tween successive timestamps, which can reveal fine-grained
variations essential for accurate and robust predictions.

Classical statistical approaches, particularly ARIMA (Box
et al., 1974; Contreras et al., 2003; Box et al., 2015),
have highlighted the role of differencing in handling non-
stationarity and reducing trends. Although differencing has
demonstrated effectiveness in stabilizing time series, deep
learning methods often treat it as a separate preprocessing
procedure (Sedaghat & Mahabal, 2018; Zhang & Shi, 2020),
missing opportunities to seamlessly integrate differential in-
sights into model optimization. This raises a key question:
can we unify time-domain modeling and differencing within
a single framework to better handle the multi-scale dynam-
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Leveraging Differential Domain Representations for Long Time Series Forecasting

ics of real-world time series?

Figure 1 provides a motivating example. Subfigures (a) and
(b) compare iTransformer’s baseline predictions with those
obtained by incorporating our proposed TimeDiff, showing
that explicitly modeling the differential domain mitigates er-
rors in local transitions and long-range dependencies. More-
over, subfigures (c)–(d) illustrate how differencing lengths
d = 1 and d = 2 capture subtle temporal variations, un-
derscoring the power of multi-scale differencing to recover
fine-grained structures.

In this paper, we propose a novel framework, TimeDiff, that
tightly integrates differencing into the forecasting process.
By learning to predict time series in the differential do-
main, our method encapsulates both global trends and local
fluctuations more effectively. This perspective addresses
non-stationarity, reduces error accumulation over extended
horizons, and offers improved representations of temporal
dynamics. In summary, our contributions are threefold:

• We introduce a novel perspective for time series fore-
casting by jointly modeling in both the original and
differential domains, thereby capturing multi-scale tem-
poral information.

• We propose TimeDiff, a unified framework that inte-
grates multi-level differencing within deep learning
architectures, avoiding treating differencing as a mere
preprocessing step.

• Through extensive experiments on benchmark datasets,
we demonstrate that TimeDiff achieves significant im-
provements over state-of-the-art methods in long-term
forecasting tasks.

2. Related works
Deep Learning-based Time Series Forecasting Deep
learning models for time series forecasting typically fall into
four main architectural categories. RNN-based methods
exploit recurrent mechanisms to learn sequential dependen-
cies (Lai et al., 2018; Salinas et al., 2020), whereas CNN-
based methods capture local patterns via temporal convo-
lutions (Bai et al., 2018; Liu et al., 2022a). Transformer-
based architectures (Vaswani, 2017) model global context
using self-attention (Cirstea et al., 2022; Liu et al., 2022b;
Kitaev et al., 2020; Li et al., 2019) and often employ strate-
gies like sparse attention (Informer (Zhou et al., 2021))
or series decomposition (Autoformer (Wu et al., 2021)).
Linear-based approaches, such as DLinear (Zeng et al.,
2023), have recently gained attention by using linear lay-
ers and decomposition operations to achieve competitive
results with lower complexity. Further advances include
pattern disentanglement (TimesNet (Wu et al., 2023)) and
architectural modifications (PatchTST (Nie et al., 2023),

iTransformer (Liu et al., 2024)). However, these methods
predominantly treat time series as static observations in
the time domain, focusing on coarse-grained trends while
neglecting evolving, fine-scale dynamics.

Differencing Methods Differencing is a long-standing
technique in statistical time series analysis, epitomized by
the ARIMA family of models (Box et al., 1974; 2015; Con-
treras et al., 2003), where differencing serves to transform a
non-stationary series into a stationary form. This approach
has proven effective across various applications, such as
weather forecasting (Tektaş, 2010; Rahman et al., 2013)
and energy demand prediction (Ediger & Akar, 2007; Er-
dogdu, 2007). However, In previous deep learning frame-
works, differencing is often relegated to a preprocessing
role (Sedaghat & Mahabal, 2018; Zhang & Shi, 2020), or
just a technique into the attention mechanism(Difformer
(Li et al., 2023), Diff Transformer (Ye et al., 2024)), thus
limiting its potential to inform model training more directly.

In contrast, our proposed TimeDiff framework embeds dif-
ferencing within the prediction process itself. By bridging
classical differencing concepts and modern deep learning,
TimeDiff is designed to address long-term dependencies
and non-stationary trends in an end-to-end manner. This
integration offers a unified treatment of both global patterns
and local changes, demonstrating that classical ideas can
still inspire effective solutions in the deep learning era.

3. Methodology
3.1. Preliminaries

Long-term Time Series Forecasting The task of LTSF
involves predicting future values over an extended horizon
using previously observed multivariate time series (MTS)
data. Formally, it can be expressed as

Ŷt+1:t+H = fθ
(
Xt−L+1:t

)
,

where Xt−L+1:t ∈ RL×C represents the historical observa-
tion window of length L with C distinct features (or chan-
nels), and Ŷt+1:t+H ∈ RH×C denotes the forecasted values
over the horizon H . As H grows, the model must capture a
broader range of temporal dependencies, from short-term
fluctuations to long-term trends, which often leads to more
complex architectures and a higher risk of error accumula-
tion.

Temporal Differencing The core differencing operation
computes variations between temporally offset sequences.
Given input X ∈ RL×C , the d-lag difference is defined as:

∆dX = Xd+1:L −X1:L−d (1)

where d ≥ 1 controls the temporal offset.
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Figure 2. TimeDiff framework.

3.2. TimeDiff Framework

TimeDiff addresses the challenges of non-stationarity and
error accumulation in long-term time series forecasting by
learning temporal patterns at multiple differencing scales.
As illustrated in Figure 2, our approach proceeds in four
main phases: multiscale differencing, parallel differential
forecasting, consensus fusion and multiscale loss. The com-
plete algorithmic details can be found in Appendix B.1.

Multiscale Differencing Define a geometric differencing
hierarchy with levels k ∈ {0, ..., N} where dk = 2k−1. The
differential operator ∆k transforms the input as:

∆kX =

{
X, k = 0

Xdk+1:L −X1:L−dk
, k ≥ 1

(2)

This generates complementary representations
{∆0X, ...,∆NX} capturing temporal patterns at ex-
ponentially increasing scales.

Parallel Differential Forecasting Each differential level
employs a dedicated predictor fk with shared architecture
but independent parameters. The prediction at level k is:

∆̂kY = fk(∆kX) ∈ RH×C (3)

Consensus Fusion Final prediction integrates all levels
through convex combination:

Ŷ =
1

N + 1

N∑
k=0

Rk(∆̂kY) (4)

The temporal alignment operator Rk ensures continuity

between historical observations and predictions through
concatenation:

Rk(Z) =

{
Z k = 0

Z+
[
XL−dk+1:L ⊕ ∆̂0Y1:H−dk

]
k ≥ 1

(5)

XL−dk+1:Lis the last dk timesteps from historical data (L-
length input) and ∆̂0Y1:H−dk

is the first H − dk timesteps
from base prediction (k = 0 output). ⊕ means temporal
concatenation along the time dimension.

Loss Function The composite loss function jointly opti-
mizes multiscale differential consistency and global predic-
tion accuracy through:

L = Lorigin + Ldiff

= ∥Ŷ −Y∥2 + λ

N∑
k=1

∥∆kŶ −∆kY∥2 (6)

∆kŶ ≜ Ŷdk+1:H − Ŷ1:H−dk
computes the k-th order tem-

poral difference of predictions, with differencing horizons
dk = 2k−1. The scaling factor λ = 1

N uniformly weights
differential regularization terms across N scales, while the
second term maintains direct supervision on the final pre-
diction. This formulation ensures balanced optimization
between hierarchical temporal pattern preservation and end-
to-end forecasting accuracy.

3.3. Theoretical Analysis

In this section, we provide a concise theoretical analysis
of TimeDiff. We highlight how its multi-level differencing

3
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Leveraging Differential Domain Representations for Long Time Series Forecasting

mechanism reduces variance, mitigates non-stationarity, and
bounds overall forecasting error. The complete proofs are
deferred to Appendix D.

Variance Reduction Guarantee Our consensus fusion
strategy achieves provable error suppression through mul-
tiscale ensemble. Let Ŷk denote the prediction from k-th
differential level, we establish:

Theorem 3.1 (Variance Upper Bound). For unbiased predic-
tors {Ŷk}Nk=0 with pairwise correlations ρij , the ensemble
variance satisfies:

V
[

1
N+1

∑N
k=0 Ŷk

]
≤

1 + ρavgN

N + 1
max

k
V[Ŷk] (7)

where ρavg = 2
N(N+1)

∑
i<j ρij .

Theorem 3.1 justifies our parallel architecture: the O(1/N)
scaling law suggests increasing differential levels directly
reduces error variance. This guided our geometric level
spacing dk = 2k to balance computational cost and error
suppression.

Non-stationarity Mitigation Our differential operators
induce stationarity through trend elimination:

Lemma 3.2 (Polynomial Trend Removal). For any m-
degree polynomial trend xt =

∑m
n=0 ant

n, the k-th order
difference satisfies:

∆
(m+1)
k xt = 0 when k > 0 (8)

where ∆
(r)
k denotes r-times repeated differencing.

Lemma 3.2 explains the hierarchical stationarization in
TimeDiff. Real-world trends (e.g., daily/weekly) are elim-
inated at appropriate levels, guiding our level selection
N ≤ ⌊log2 L⌋ − 1 to capture typical periodicities.

Error Composition Principle The prediction error of
TimeDiff is fundamentally controlled by the differential
consistency between final predictions and ground truth. Our
main theoretical result establishes:

Proposition 3.3 (Differential Consistency Bound). Let
∆kŶ = Ŷdk+1:H − Ŷ1:H−dk

denote the k-th order differ-
ence of final predictions. The total prediction error satisfies:

∥Ŷ−Y∥ ≤ 1√
N

(
N∑

k=1

∥∆kŶ −∆kY∥2
)1/2

+Ebase (9)

where Ebase = ∥Ŷ −Y∥ represents base prediction accu-
racy.

This bound reveals two fundamental error sources: 1. Mul-
tiscale Differential Errors: Aggregated inconsistencies

in temporal patterns across N scales 2. Base Prediction
Error: Direct point-wise forecasting inaccuracies

The geometric scaling dk = 2k−1 ensures the first term
decays as O(1/

√
N), theoretically justifying our design

choices in Section 3.2.

4. Experiments
In this section, We conduct a series of experiments to an-
swer the following questions to demonstrate the efficacy of
TimeDiff :

1. Performance: Does TimeDiff actually improve long-
term forecasting? (Section 4.1)

2. Mechanism: Which components of TimeDiff con-
tribute to its effectiveness? (Section 4.2)

3. Generality: Can TimeDiff adapt to other forecasting
models beyond iTransformer? (Section 4.3)

4. Sensitivity: How does the differencing level N and
look-back window L affect performance? (Section 4.4)

5. Robustness: Does TimeDiff interact well with other
techniques (e.g., instance normalization)? (Section
4.5)

Datasets. We conduct our experiments on 8 publicly avail-
able datasets of real-world time series, commonly used for
long-term forecasting (Wu et al., 2021; Chen et al., 2023;
Nie et al., 2023; Zeng et al., 2023): the 4 Electricity Trans-
former Temperature datasets ETTh1, ETTh2, ETTm1 and
ETTm2 (Zhou et al., 2021), Electricity (UCI, n.d.), Ex-
change (Lai et al., 2018), Traffic (California Department of
Transportation, n.d.), and Weather (Max Planck Institute,
n.d.) datasets. For fairness, the look-back window size L is
set to 96, and prediction horizons H ∈ {96, 192, 336, 720},
A more detailed description of the datasets and time series
preparation can be found in Appendix B.2.

Evaluation metric. Following previous works , we use
Mean Squared Error (MSE) and Mean Absolute Error
(MAE) as the core metrics to compare performance.

Baselines Our baselines include various established mod-
els, which can be grouped into three categories: (1)
Transformer-based methods: Autoformer (Wu et al., 2021),
FEDformer (Zhou et al., 2022), Crossformer (Zhang &
Yan, 2023), and PatchTST (Nie et al., 2023). (2) Linear-
based methods: DLinear (Zeng et al., 2023); (3) CNN-based
method: TimesNet (Wu et al., 2023).

4
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Leveraging Differential Domain Representations for Long Time Series Forecasting

Environments All experiments in this paper were imple-
mented using PyTorch (Paszke et al., 2019), trained using
the Adam (Kingma & Ba, 2015) optimizer, and executed on
a single NVIDIA A100 GPU with 40 GB memory.

4.1. Performance — Does TimeDiff actually improve
long-term forecasting?

We adopt iTransformer (Liu et al., 2024) as the predictor f
and enhance its performance using our TimeDiff framework.
To ensure a fair comparison, all hyperparameters are kept
consistent with the official implementation, including
model-specific parameters such as dmodel and the number
of encoder layers, as well as training-related settings such
as batch size and learning rate. Detailed configurations can
be found in Appendix B.3.

Overall, TimeDiff significantly enhances the performance
of iTransformer. As shown in Table 2, TimeDiff surpasses
its backbone model in 96.88% test scenarios, achieving
the best results across 20 different experimental condi-
tions. Notably, TimeDiff not only improves iTransformer
but also enables it to surpass models that originally out-
performed iTransformer on certain datasets. Specifically,
TimeDiff achieves 7 state-of-the-art results that were previ-
ously unattainable by iTransformer. This demonstrates that
the improvements introduced by TimeDiff extend beyond
the capabilities of architectural design alone, underscoring
the pivotal role of differential domain modeling in advanc-
ing long time series forecasting.

Moreover, differential domain modeling does not increase
the standard deviation across 5 runs; in some cases, it even
results in a lower standard deviation compared to iTrans-
former itself. This demonstrates the robustness of TimeDiff
and its ability to produce consistent and reliable results,
further validating the effectiveness of modeling in the dif-
ferential domain for long time series forecasting. The MAE
results can be found in Appendix C.1, which also demon-
strate the effectiveness of our approach.

4.2. Mechanism — Which components of TimeDiff
contribute to its effectiveness?

Table 1. Ablation Study on Diff Prediction and Diff Loss (MSE
Scores)

Diff Pred Diff Loss
ETTm1 Traffic

96 192 336 720 96 192 336 720

× × 0.347 0.384 0.420 0.494 0.395 0.414 0.425 0.460
✓ × 0.332 0.376 0.413 0.492 0.472 0.418 0.423 0.457
× ✓ 0.336 0.381 0.415 0.483 0.391 0.412 0.424 0.459
✓ ✓ 0.332 0.373 0.411 0.485 0.387 0.396 0.413 0.440

Diff Prediction & Loss Two key components of the
TimeDiff framework are differencing domain prediction and
the corresponding multi-level differencing loss. As shown

in Table 1, both designs generally have a positive impact
on the results. On one hand, the constraint imposed by the
differencing loss enhances the accuracy of modeling in the
differencing domain. For instance, in the Traffic dataset,
merely adding the Predictor without utilizing the differenc-
ing constraint leads to a negative impact on performance. On
the other hand, using the predictor for differencing domain
modeling, rather than relying solely on the loss function,
strengthens the representation capacity of the model. The
MAE results can be found in Appendix C.4.

96 192 336 720
Prediction Length (L)
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(a) ETTm1 Dataset
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Figure 3. Comparison of Models on ETTm1 and Traffic Datasets.
Each chart illustrates the performance of models with varying
prediction lengths.
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Figure 4. MultiPredictor framework.

The effect of additional parameters While the TimeDiff
framework significantly improves performance by lever-
aging predictors to learn information from the differential
domain, it also introduces additional parameters. This nat-
urally raises an important question: Are the improvements
achieved by TimeDiff solely due to the increase in parame-
ter count? To investigate this, we designed a simple baseline
method, as illustrated in Figure 4. In this approach, the
original time-domain sequence is modeled by multiple pre-
dictors independently, and their outputs are averaged to
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Table 2. Performance comparison between our model (TimeDiff) and baselines for long-term forecasting with different horizons H . We
display the average test MSE with standard deviation obtained on 5 runs with different random seeds. Best results are in bold, second best
are underlined.

Dataset H
TimeDiff iTransformer PatchTST Crossformer TimesNet DLinear FEDformer Autoformer

Ours (2024) (2023) (2023) (2023) (2023) (2022) (2021)

E
T

T
h1

96 0.384±0.001 0.393±0.001 0.382 0.469 0.407 0.396 0.376 0.477
192 0.437±0.001 0.447±0.001 0.429 0.504 0.465 0.447 0.439 0.470
336 0.479±0.001 0.488±0.002 0.471 0.635 0.497 0.496 0.453 0.528
720 0.497±0.003 0.512±0.005 0.508 0.728 0.518 0.510 0.506 0.496

E
T

T
h2

96 0.291±0.001 0.300±0.001 0.309 0.900 0.345 0.347 0.357 0.392
192 0.374±0.002 0.379±0.000 0.386 1.065 0.423 0.463 0.438 0.463
336 0.421±0.002 0.422±0.001 0.439 3.046 0.437 0.573 0.466 0.491
720 0.431±0.005 0.434±0.006 0.450 3.677 0.457 0.839 0.457 0.494

E
T

T
m

1 96 0.332±0.002 0.348±0.001 0.324 0.369 0.328 0.345 0.366 0.476
192 0.373±0.001 0.387±0.001 0.370 0.442 0.411 0.382 0.426 0.536
336 0.411±0.001 0.424±0.001 0.400 0.558 0.421 0.415 0.448 0.749
720 0.483±0.002 0.493±0.002 0.463 0.741 0.496 0.472 0.506 0.566

E
T

T
m

2 96 0.178±0.000 0.185±0.001 0.180 0.262 0.185 0.194 0.191 0.266
192 0.244±0.002 0.252±0.002 0.249 0.877 0.256 0.284 0.263 0.282
336 0.305±0.002 0.315±0.001 0.318 1.612 0.313 0.373 0.321 0.338
720 0.404±0.001 0.412±0.002 0.422 4.090 0.418 0.538 0.440 0.430

E
le

ct
ri

ci
ty 96 0.143±0.003 0.148±0.000 0.180 0.149 0.169 0.211 0.195 0.204

192 0.161±0.002 0.164±0.001 0.188 0.163 0.183 0.210 0.206 0.280
336 0.174±0.003 0.179±0.000 0.204 0.186 0.199 0.223 0.219 0.244
720 0.205±0.003 0.211±0.002 0.245 0.246 0.220 0.258 0.261 0.281

E
xc

ha
ng

e 96 0.084±0.001 0.087±0.001 0.086 0.273 0.116 0.094 0.159 0.160
192 0.177±0.001 0.179±0.000 0.183 0.568 0.213 0.194 0.248 0.273
336 0.333±0.004 0.335±0.002 0.310 1.189 0.355 0.344 0.385 0.536
720 0.853±0.005 0.852±0.004 0.973 1.597 1.028 0.796 1.176 1.187

Tr
af

fic

96 0.389±0.001 0.393±0.001 0.462 0.514 0.584 0.710 0.597 0.619
192 0.401±0.004 0.412±0.001 0.466 0.540 0.616 0.662 0.601 0.648
336 0.414±0.001 0.424±0.001 0.484 0.583 0.624 0.669 0.638 0.619
720 0.443±0.003 0.458±0.001 0.517 0.589 0.657 0.709 0.648 0.690

W
ea

th
er

96 0.170±0.001 0.175±0.001 0.173 0.172 0.171 0.198 0.224 0.271
192 0.219±0.003 0.225±0.001 0.221 0.236 0.234 0.236 0.294 0.314
336 0.277±0.003 0.281±0.001 0.282 0.276 0.284 0.283 0.334 0.353
720 0.355±0.000 0.359±0.001 0.356 0.370 0.357 0.346 0.422 0.422

1st Count 20 0 6 1 0 2 2 1

produce the final forecast. We refer to this baseline method
as MultiPredictor, as shown in Figure 4. The key differ-
ence between MultiPredictor and TimeDiff lies in the fact
that MultiPredictor does not utilize the differencing domain
for modeling, only using the original time-domain sequence,
and esembles multiple predictors to enhance the representa-
tion capacity.

As illustrated in Figure 3, on the ETTm1 dataset, Multi-
Predictor achieves better performance for shorter prediction
horizons (96, 192), but exhibits a negative impact on longer
sequence predictions (336, 720). This phenomenon is even
more pronounced on the Traffic dataset, where MultiPredic-
tor significantly increases the error across all prediction

horizons, leading to a notable decline in prediction accu-
racy. On the other hand, TimeDiff consistently outperforms
the baseline across all settings. This demonstrates that the
effectiveness of TimeDiff does not primarily stem from an
increase in the number of parameters but rather from its
ability to model the differencing domain.

4.3. Generality — Can TimeDiff adapt to other
forecasting models?

In addition to using iTransformer as the primary backbone
in our main experiments, we further evaluated the gener-
alizability of TimeDiff by integrating it with other models
as predictors, including DLinear, PatchTST, and a simple

6
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(b) PatchTST - ETTh1

100 200 300 400 500 600 700
Prediction Length (L)

0.38

0.40

0.42

0.44

0.46

0.48

0.50

M
SE

MLP (Baseline)
MLP + TimeDiff

(c) MLP - ETTh1

100 200 300 400 500 600 700
Prediction Length (L)

0.60

0.62

0.64

0.66

0.68

0.70

M
SE

DLinear (Baseline)
DLinear + TimeDiff

(d) DLinear - Traffic
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Figure 5. Comparison of different models with and without TimeDiff on ETTh1 and Traffic datasets. Baseline models use solid lines, and
TimeDiff-enhanced models use dashed lines.

MLP model. The motivation for selecting DLinear was to
assess the compatibility of linear-based models and trend
decomposition techniques within the differential domain.
For PatchTST, we aimed to examine whether the widely
adopted patch-based temporal representation remains effec-
tive when applied to differenced sequences. The inclusion
of MLP was based on the growing prominence of MLP-
based models alongside Transformer-based approaches in
recent time series forecasting research.

As illustrated in Figure 5, TimeDiff consistently outper-
forms the baseline across all configurations. Even on the
ETTh1 dataset, where the performance gains are generally
more limited, TimeDiff still achieves notable improvements,
particularly for long sequences (L = 720). On the Traffic
dataset, the performance enhancement is even more pro-
nounced, significantly surpassing the baseline across all
settings. These results further validate the effectiveness of
TimeDiff across diverse model architectures, demonstrating
its versatility and robustness in various time series forecast-
ing scenarios. A more detailed comparison of the results
can be found in Appendix C.2.

4.4. Sensitivity — How does N and L affect
performance?

Impact of the diff level N An important parameter of the
TimeDiff method is the Diff level N , which determines the
granularity of differencing modeling, or in other words, the

temporal interval of changes being modeled. The impact
of the Diff level is illustrated in Figure 6. As shown in
the figure, the prediction performance generally exhibits a
trend of initially decreasing and then increasing with the
Diff level. This aligns with our expectations: when N be-
comes excessively large, the input sequence to the predictor
becomes shorter due to the differencing process, which ad-
versely affects the modeling in the differencing domain and,
consequently, the overall prediction performance.

Impact of Look-back window L Existing methods often
select different look-back window lengths (L) to achieve op-
timal performance. In our main experiments, we set L = 96
to align with the settings used in iTransformer. Here, we
further evaluate the performance of TimeDiff under larger
L values, as shown in Figure 7. Although the predictive
performance of TimeDiff on the ETTh1 dataset deteriorates
as L increases due to the limitations of the backbone, it
eventually achieves the best result when L = 720. More-
over, under all settings, TimeDiff consistently outperforms
the baseline model, demonstrating its robustness and effec-
tiveness across a wide range of look-back window lengths.

4.5. Robustness — Does TimeDiff interact well with
other techniques?

Time series data often exhibit distributional shifts between
training and testing datasets, making it challenging to main-
tain consistent predictive performance (Lin et al., 2024b).
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Figure 6. Comparison of Models on ETTh1 and ETTh2 Datasets.
Each chart illustrates the performance of models with varying diff
level N .
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Figure 7. Comparison of Models on ETTh1 and Traffic Datasets.
Each chart illustrates the performance of models with varying look
back window L.

Recent studies (Kim et al., 2021; Zeng et al., 2023)have
demonstrated that applying simple sample normalization
strategies between the input and output of models can allevi-
ate this issue by reducing the non-stationarity of time series

data. In our baseline model, iTransformer, this normaliza-
tion strategy is also employed.

Since one of the primary objectives of differencing is to
stabilize the sequence and address non-stationarity, we fur-
ther investigate the individual impact of TimeDiff, as well
as its combined effect with the normalization operation, as
shown in Table 3. The results indicate that using TimeD-
iff alone improves performance, while the combination of
TimeDiff and normalization achieves the best results. This
demonstrates that TimeDiff is compatible with mainstream
normalization techniques, enhancing its practical utility and
further improving its effectiveness in time series forecasting
tasks.

Table 3. Ablation of Instance Norm and TimeDiff

Instance Norm TimeDiff
ETTh1 ETTh2 Electricity Traffic

MSE MAE MSE MAE MSE MAE MSE MAE

× × 0.414 0.430 0.526 0.512 0.149 0.246 0.538 0.302
× ✓ 0.390 0.411 0.447 0.459 0.146 0.244 0.536 0.311
✓ × 0.392 0.408 0.299 0.350 0.148 0.240 0.393 0.268
✓ ✓ 0.384 0.396 0.288 0.338 0.144 0.236 0.387 0.265

5. Conclusion and Future Work
In this paper, we present TimeDiff, a novel framework for
long-term time series forecasting that leverages differential
domain modeling to enhance predictive performance. In-
spired by classical statistical methods like ARIMA, which
emphasize the importance of differencing in handling trends
and non-stationarity, TimeDiff demonstrates that these foun-
dational ideas remain highly relevant in the deep learning
era. Our primary contribution lies not in proposing a spe-
cific model but in introducing a fresh perspective to time
series forecasting——one that shifts the focus from direct
time-domain modeling to differential domain representa-
tions. Extensive experiments demonstrate that TimeDiff
consistently surpasses state-of-the-art methods across di-
verse scenarios, achieving notable gains in accuracy and
robustness. While TimeDiff involves additional parameters
(controlled by the differencing level N ), our results confirm
that these parameters enable more effective modeling of
temporal dynamics compared to naive increases in network
complexity. Nevertheless, setting the appropriate differenc-
ing levels will introduce additional tuning considerations.

Our work highlights the enduring value of classical ideas
and their potential to inspire innovation in modern deep
learning frameworks. Looking forward, we plan to extend
TimeDiff to address challenges in ultra-long sequences, ir-
regular time series, and multi-scale temporal patterns. We
aim to further explore the synergy between classical statis-
tical methods and deep learning, striving to provide new
insights into the evolving field of time series forecasting.
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A. Assessing LLMs’ Proficiency in Capturing Inferential Rules
A.1. Analysis Setup

Following the experimental setup proposed by ?, we adopt the ULogic framework to systematically evaluate large language
models (LLMs) on their ability to capture underlying inferential logic. Specifically, we leverage a curated probing subset
comprising 1,104 diverse rules drawn from their rule base. These rules—manually verified by the original authors—span a
range of lengths, polarities, and structural patterns, ensuring broad coverage and high quality. The evaluation is framed
as a binary entailment classification task, where the model must determine whether a given rule expresses a valid logical
entailment. We employ a two-shot Chain-of-Thought (CoT) prompting method (?), in which each input includes one correct
and one incorrect example to minimize label bias. The model is prompted not only to make a binary judgment but also to
justify its reasoning, with an appended instruction such as ”and also explain why.”

To further enhance the reliability of the evaluation, we incorporate the Law of Non-Contradiction (?), which posits that
statements of the form “If X, then Y” and “If X, then not Y” cannot simultaneously be true. Accordingly, for each original
rule, we construct a flipped version by negating its conclusion. A rule is considered correctly classified only if the model
affirms the original rule as true and rejects the flipped version as false, as illustrated below (a concrete example is provided
in Appendix ??).

If Premise, then Conclusionoriginal. True
If Premise, then Conclusionflipped. False

A.2. Empirical Analysis

We conduct experiments on FANformer-1B, OLMo-1B, Qwen2.5-1.5B, and Qwen2.5-1.5B-Instruct, with the goal of
analyzing their capacity to capture inferential rules.

To better understand the models’ behavior, we analyze performance with respect to compositional complexity by grouping
rules according to the number of atomic facts contained in their premises. For instance, “Length=3” and “Length=4” refer to
rules with premises composed of 3 to 4 atomic propositions, respectively, as illustrated in ??.

B. Implementation Details
B.1. Overall Workflow

The TimeDiff forecasting procedure, formalized in Algorithm 1, operates through three coordinated phases: multiscale
differential encoding, parallel prediction, and consensus fusion. First, we construct geometrically spaced differential
sequences {∆kX}Nk=0 where dk = 2k. This hierarchy captures temporal patterns from instantaneous fluctuations (k = 0) to
long-range trends (k = N ).

For each differential level, dedicated predictors {fk} generate scale-specific forecasts ∆̂kY in parallel. This architecture
prevents error propagation across scales while enabling flexible model selection.

The consensus fusion phase combines predictions through:

• Temporal alignment using historical segments XL−dk+1:L−dk+H

• Convex combination of aligned predictions with uniform weighting

B.2. Dataset Descriptions

We evaluate TimeDiff on eight real-world datasets:
(1) ETT (Zhou et al., 2021): Comprises seven operational metrics from electricity transformers recorded between July 2016
and July 2018. The dataset contains four subsets with different temporal resolutions: ETTh1 and ETTh2 (hourly sampling)
versus ETTm1 and ETTm2 (15-minute sampling).
(2) Exchange (Lai et al., 2018): Provides daily currency exchange rates for eight nations from 1990 to 2016.
(3) Weather (Max Planck Institute, n.d.): Captures 21 meteorological variables measured at 10-minute intervals during
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Algorithm 1 TimeDiff Forecasting Algorithm

Require: Historical series X ∈ RL×C , forecast horizon H , max diff level N
Ensure: Forecast Ŷ ∈ RH×C

1: Initialize predictions {∆̂kY}Nk=0 ← ∅
2: for k = 0 to N do
3: if k = 0 then
4: ∆0X← X ▷ Original scale
5: else
6: dk ← 2k−1 ▷ Geometric spacing
7: ∆kX← Xdk+1:L −X1:L−dk

▷ Differencing
8: end if
9: ∆̂kY ← fk(∆kX) ▷ Parallel forecasting

10: end for
11: for k = 0 to N do
12: if k = 0 then
13: Ŷ(0) ← ∆̂0Y
14: else
15: Ŷ(k) ← ∆̂kY + [XL−dk+1:L ⊕ ∆̂0Y1:H−dk

] ▷ Revising
16: end if
17: end for
18: Ŷ ← 1

N+1

∑N
k=0 Ŷ

(k) ▷ Consensus integration
19: Compute differential terms: ∆kŶ ← Ŷdk+1:H − Ŷ1:H−dk

for k = 1, ..., N

20: Compute loss: L = 1
N

∑N
k=1 ∥∆kŶ −∆kY∥2 + ∥Ŷ −Y∥2

21: return Ŷ

2020 at the Max Planck Biogeochemistry Institute weather station.
(4) ECL (UCI, n.d.): Documents hourly power consumption patterns from 321 industrial clients.
(5) Traffic (California Department of Transportation, n.d.): Contains hourly freeway occupancy rates monitored by 862
sensors across the San Francisco Bay Area (2015-2016).

Following iTransformer’s experimental protocol (Liu et al., 2024), we implement chronological dataset partitioning
(train/validation/test) to eliminate temporal leakage. The model uses fixed-length historical observations (L = 96) with
variable prediction horizons H ∈ {96, 192, 336, 720}. Comprehensive dataset statistics are summarized in Table 4.

Table 4. Detailed dataset descriptions. Channel denotes the variate number of each dataset. Dataset Size denotes the total number of time
points in (Train, Validation, Test) split respectively. Prediction Length denotes the future time points to be predicted and four prediction
settings are included in each dataset. Frequency denotes the sampling interval of time points.

Dataset Channel C Prediction Length H Dataset Size Frequency Information

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

B.3. Experiment Setup

As elaborated in the main text of the paper, we conducted experiments using identical hyperparameter configurations as
those specified for the backbone iTransformer architecture (even though TimeDiff might potentially benefit from more
tailored configurations) to ensure a fair and consistent comparison across all models. The complete experimental setup is
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comprehensively documented in Table 5. For other baseline models and comparative approaches, we faithfully reproduced
their reported performance using the widely-recognized Time-Series-Library1’s publicly available implementations, which
have been extensively validated through numerous time series forecasting studies. This standardized evaluation protocol
guarantees the reliability of our comparative analysis while maintaining methodological transparency.

Table 5. Experiment configurations for different datasets. N means differencing level, LR means learning rate. Patience is the early stop
epoch

Dataset/Configuration
Model-related Training-related

dmodel dff Layers N Batch Size LR Epochs Patience

ETT 128 128 2 4 32 1× 10−4 10 3
Exchange 128 128 2 4 32 1× 10−4 10 3

ECL 512 512 3 4 16 5× 10−4 10 3
Traffic 512 512 4 1 16 1× 10−3 10 3

Weather 512 512 3 4 32 1× 10−4 10 3

C. Additional Experiments Results
C.1. MAE Results

In this section, we provide a comprehensive performance comparison of our proposed model (TimeDiff) against various
baselines for long-term forecasting across different prediction horizons H. The results are displayed in Table 6. The
findings align with the conclusions drawn in the main paper, highlighting the significant superiority of TimeDiff over its
competitors, including recent state-of-the-art models such as iTransformer (Liu et al., 2024), PatchTST (Nie et al., 2023),
and Crossformer (Zhang & Yan, 2023). The table presents the average MAE along with standard deviations obtained from
five runs with different random seeds.

C.2. The full results of TimeDiff for other backbones

In addition to using iTransformer as the primary backbone, we conducted comprehensive experiments to evaluate TimeDiff’s
generalizability across different architectures. Here we include a recently proposed model CycleNet (Lin et al., 2024a),
which is a MLP-based model that has shown strong performance in time series forecasting. We also include DLinear (Zeng
et al., 2023) and PatchTST (Nie et al., 2023) as additional backbones.

As shonw in Table 7, TimeDiff consistently outperforms the original backbones across nearly all datasets and prediction
horizons. It can be seen that when incorporating TimeDiff, the average MSE of PatchTST(0.343) is better than original
iTransformer(0.344), and iTransformer with TimeDiff(0.336) can also be better than the original CycleNet(0.340).This
demonstrates the versatility and effectiveness of the TimeDiff framework in enhancing the performance of various forecasting
models.

C.3. Impact of Diff Level

In this section, we investigate the impact of the diff level N on the performance of the TimeDiff method. The diff level N is
a crucial parameter that determines the granularity of differencing modeling, essentially representing the temporal interval
of changes being captured. The results are illustrated in Figure 8, where each subfigure corresponds to a different dataset.
As shown in the figure, the prediction performance generally follows a trend of initially decreasing and then increasing with
the diff level N. This trend is consistent across all datasets. When N is small, the model can capture finer-grained temporal
changes, leading to improved performance. However, as N increases, the input sequence to the predictor becomes shorter
due to the differencing process. This reduction in sequence length adversely affects the modeling in the differencing domain
and, consequently, degrades the overall prediction performance. Therefore, selecting an appropriate diff level N is essential
for achieving optimal performance in the TimeDiff method.

1https://github.com/thuml/Time-Series-Library
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Table 6. Performance comparison between our model (TimeDiff) and baselines for long-term forecasting with different horizons H . We
display the average test MAE with standard deviation obtained on 5 runs with different random seeds. Best results are in bold, second best
are underlined.

Dataset H
TimeDiff iTransformer PatchTST Crossformer TimesNet DLinear FEDformer Autoformer

Ours (2024) (2023) (2023) (2023) (2023) (2022) (2021)

E
T

T
h1

96 0.397±0.001 0.408±0.001 0.401 0.471 0.424 0.411 0.417 0.476
192 0.428±0.001 0.440±0.001 0.432 0.491 0.459 0.443 0.459 0.464
336 0.452±0.001 0.462±0.002 0.460 0.585 0.471 0.473 0.464 0.502
720 0.484±0.002 0.498±0.003 0.497 0.638 0.495 0.508 0.507 0.503

E
T

T
h2

96 0.341±0.001 0.350±0.001 0.365 0.409 0.369 0.372 0.412 0.468
192 0.392±0.001 0.399±0.000 0.390 0.479 0.407 0.390 0.445 0.491
336 0.429±0.001 0.432±0.001 0.408 0.540 0.425 0.414 0.457 0.574
720 0.446±0.003 0.450±0.003 0.446 0.668 0.464 0.450 0.490 0.520

E
T

T
m

1 96 0.367±0.001 0.379±0.000 0.365 0.409 0.369 0.372 0.412 0.468
192 0.386±0.000 0.396±0.000 0.390 0.479 0.407 0.390 0.445 0.491
336 0.411±0.001 0.420±0.000 0.408 0.540 0.425 0.414 0.457 0.574
720 0.451±0.001 0.458±0.001 0.446 0.668 0.464 0.450 0.490 0.520

E
T

T
m

2 96 0.262±0.001 0.271±0.001 0.264 0.346 0.264 0.293 0.281 0.334
192 0.305±0.001 0.313±0.001 0.311 0.672 0.310 0.361 0.325 0.341
336 0.344±0.001 0.352±0.001 0.353 0.859 0.344 0.421 0.362 0.376
720 0.400±0.001 0.406±0.002 0.417 1.406 0.409 0.515 0.432 0.425

E
le

ct
ri

ci
ty 96 0.236±0.002 0.240±0.000 0.271 0.250 0.273 0.302 0.308 0.320

192 0.254±0.002 0.256±0.001 0.279 0.261 0.285 0.305 0.319 0.365
336 0.269±0.002 0.272±0.000 0.296 0.286 0.300 0.319 0.334 0.351
720 0.297±0.002 0.300±0.001 0.328 0.331 0.313 0.350 0.366 0.380

E
xc

ha
ng

e 96 0.203±0.001 0.207±0.001 0.203 0.380 0.246 0.227 0.288 0.288
192 0.299±0.001 0.302±0.001 0.304 0.561 0.335 0.332 0.362 0.384
336 0.417±0.003 0.420±0.001 0.405 0.859 0.431 0.450 0.455 0.546
720 0.698±0.001 0.697±0.001 0.745 1.021 0.776 0.683 0.833 0.836

Tr
af

fic

96 0.266±0.000 0.269±0.001 0.299 0.265 0.316 0.437 0.377 0.398
192 0.272±0.001 0.277±0.000 0.301 0.290 0.327 0.417 0.376 0.416
336 0.279±0.001 0.283±0.000 0.308 0.296 0.334 0.419 0.400 0.383
720 0.293±0.001 0.300±0.001 0.326 0.328 0.348 0.437 0.402 0.424

W
ea

th
er

96 0.210±0.001 0.215±0.001 0.213 0.244 0.222 0.260 0.309 0.335
192 0.255±0.000 0.258±0.001 0.258 0.310 0.273 0.295 0.354 0.366
336 0.297±0.001 0.299±0.001 0.299 0.340 0.306 0.334 0.375 0.389
720 0.349±0.001 0.350±0.001 0.349 0.412 0.352 0.382 0.427 0.429

1st Count 23 0 5 1 0 2 0 0

C.4. Impact of Diff Prediction and Diff Loss

In this section, we conduct an ablation study on two key components of the TimeDiff framework—Diff Prediction and
Diff Loss—with the results shown in Table 8. The study demonstrates that these two components significantly enhance
the model’s performance. Specifically, the Diff Loss imposes constraints on the differencing domain modeling, thereby
improving the model’s accuracy. For example, in the Traffic dataset, using only the Diff Prediction without the Diff Loss
leads to a degradation in performance (e.g., an MAE of 0.345 for the 96-step prediction horizon, compared to 0.265 when
both components are used). This highlights the importance of the constraints provided by the Diff Loss in enhancing model
accuracy. On the other hand, using Diff Prediction for differencing domain modeling, rather than relying solely on the loss
function, significantly strengthens the model’s representation capability. For instance, in the ETTm1 dataset, using only the
Diff Loss without the Diff Prediction results in slightly higher MAE values (e.g., an MAE of 0.371 for the 96-step prediction
horizon, compared to 0.367 when both components are used). This indicates that combining both components is essential
for achieving optimal performance. Overall, the results emphasize the importance of integrating both Diff Prediction and
Diff Loss in the TimeDiff framework to achieve the best performance across different prediction horizons and datasets.
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Table 7. Performance comparison between original backbone models and their TimeDiff-enhanced variants for long-term forecasting with
different horizons (H). The better results are in bold.

Method iTransformer + TimeDiff PatchTST + TimeDiff DLinear + TimeDiff CycleNet + TimeDiff

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.348 0.379 0.332 0.367 0.324 0.365 0.320 0.362 0.345 0.372 0.344 0.372 0.321 0.362 0.316 0.359
192 0.387 0.396 0.373 0.386 0.370 0.390 0.362 0.386 0.382 0.390 0.381 0.390 0.361 0.381 0.360 0.380
336 0.424 0.420 0.411 0.411 0.400 0.408 0.398 0.409 0.415 0.414 0.412 0.412 0.389 0.404 0.387 0.403
720 0.493 0.458 0.483 0.451 0.463 0.446 0.458 0.444 0.472 0.450 0.474 0.452 0.452 0.441 0.446 0.439

E
T

T
m

2 96 0.185 0.271 0.178 0.262 0.180 0.264 0.179 0.264 0.194 0.293 0.181 0.264 0.165 0.248 0.162 0.245
192 0.252 0.313 0.244 0.305 0.249 0.311 0.253 0.315 0.284 0.361 0.246 0.304 0.230 0.291 0.227 0.288
336 0.315 0.352 0.305 0.344 0.318 0.353 0.312 0.351 0.373 0.421 0.307 0.343 0.285 0.328 0.285 0.328
720 0.412 0.406 0.404 0.400 0.422 0.417 0.415 0.411 0.538 0.515 0.407 0.398 0.390 0.390 0.392 0.392

E
T

T
h1

96 0.393 0.408 0.384 0.397 0.382 0.401 0.378 0.397 0.396 0.411 0.386 0.396 0.379 0.400 0.373 0.392
192 0.447 0.440 0.437 0.428 0.429 0.432 0.428 0.431 0.447 0.443 0.437 0.425 0.437 0.437 0.429 0.422
336 0.488 0.462 0.479 0.452 0.471 0.460 0.465 0.455 0.496 0.473 0.479 0.446 0.488 0.471 0.486 0.456
720 0.512 0.498 0.497 0.484 0.508 0.497 0.483 0.490 0.510 0.508 0.474 0.466 0.546 0.516 0.486 0.468

E
T

T
h2

96 0.300 0.350 0.291 0.341 0.309 0.356 0.300 0.350 0.347 0.401 0.344 0.397 0.295 0.343 0.287 0.338
192 0.379 0.399 0.374 0.392 0.386 0.405 0.374 0.393 0.463 0.469 0.457 0.463 0.375 0.394 0.368 0.393
336 0.422 0.432 0.421 0.429 0.439 0.451 0.408 0.426 0.573 0.533 0.558 0.523 0.442 0.445 0.429 0.437
720 0.434 0.450 0.431 0.446 0.450 0.459 0.429 0.449 0.839 0.661 0.822 0.653 0.444 0.454 0.434 0.448

w
ea

th
er

96 0.175 0.215 0.170 0.210 0.173 0.213 0.177 0.217 0.198 0.260 0.195 0.235 0.159 0.203 0.159 0.204
192 0.225 0.258 0.219 0.255 0.221 0.258 0.221 0.256 0.236 0.295 0.240 0.270 0.206 0.247 0.206 0.248
336 0.281 0.299 0.277 0.297 0.282 0.299 0.278 0.299 0.283 0.334 0.291 0.307 0.262 0.291 0.262 0.289
720 0.359 0.350 0.355 0.349 0.356 0.349 0.352 0.346 0.346 0.382 0.364 0.353 0.344 0.345 0.344 0.345

Tr
af

fic

96 0.393 0.269 0.389 0.266 0.462 0.299 0.433 0.274 0.710 0.437 0.645 0.383 0.460 0.298 0.454 0.290
192 0.412 0.277 0.401 0.272 0.466 0.301 0.440 0.278 0.662 0.417 0.598 0.359 0.457 0.295 0.454 0.289
336 0.424 0.283 0.414 0.279 0.484 0.308 0.450 0.288 0.669 0.419 0.605 0.362 0.471 0.299 0.468 0.294
720 0.458 0.300 0.443 0.293 0.517 0.326 0.481 0.308 0.709 0.437 0.643 0.381 0.503 0.315 0.498 0.310

E
C

L

96 0.148 0.240 0.143 0.236 0.180 0.271 0.175 0.262 0.211 0.302 0.199 0.277 0.136 0.229 0.136 0.230
192 0.164 0.256 0.161 0.254 0.188 0.279 0.179 0.265 0.210 0.305 0.199 0.280 0.153 0.245 0.153 0.245
336 0.179 0.272 0.174 0.269 0.204 0.296 0.202 0.294 0.223 0.319 0.214 0.295 0.170 0.263 0.170 0.263
720 0.211 0.300 0.205 0.297 0.245 0.328 0.241 0.327 0.258 0.350 0.255 0.327 0.212 0.300 0.210 0.298

Average 0.344 0.348 0.336 0.342 0.353 0.355 0.343 0.348 0.421 0.406 0.399 0.376 0.340 0.344 0.335 0.339

Table 8. Ablation Study on Diff Prediction and Diff Loss (MAE Scores)

Diff Pred Diff Loss
ETTm1 Traffic

96 192 336 720 96 192 336 720

× × 0.379 0.396 0.420 0.460 0.270 0.278 0.283 0.301
✓ × 0.368 0.391 0.416 0.459 0.345 0.283 0.285 0.303
× ✓ 0.371 0.393 0.415 0.452 0.267 0.276 0.283 0.300
✓ ✓ 0.367 0.388 0.413 0.455 0.265 0.270 0.279 0.291

D. Proofs of Theoretical Results
Notations To ease the readability of the proofs, we recall the following key notations:

• ∆k: The k-th level differential operator, ∆kX = Xdk+1:L −X1:L−dk
with dk = 2k
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(b) ETTh1 Dataset
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Figure 8. Comparison of models across different datasets with varying diff level N . Each chart illustrates the performance of models
under different diffusion configurations.

• N : Differencing level, defining the hierarchy {0, 1, ..., N}

• ϵk: Base prediction error at level k, ϵk = ∥∆̂kY −∆kY∥

• δk: Reconstruction discrepancy, δk = ∥Rk(∆kY)−Y∥
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• ρavg: Average correlation between predictions, ρavg = 2
N(N+1)

∑
i<j ρij

• αk: Ensemble weights, αk = 1
N+1 for k ∈ {0, ..., N}

• v: Arbitrary test vector in variance analysis (∥v∥ = 1)

• Rk: Reconstruction operator aligning temporal dimensions

• Ŷ(k) = Rk(∆̂kY): Aligned prediction at level k

• ∆kY = Ydk+1:H −Y1:H−dk
: Ground truth differences

• Ek[·]: Expectation over scale k

Proof of Theorem 1 (Variance Reduction) Let αk = 1/(N + 1). For any vector v:

v⊤V[Ŷ]v =

N∑
i,j=0

αiαjv
⊤Cov(Ŷi, Ŷj)v

≤ 1

(N + 1)2

[
(N + 1)max

i
v⊤V[Ŷi]v +N(N + 1)ρmax

i
v⊤V[Ŷi]v

]
=

1 + ρN

N + 1
max

i
v⊤V[Ŷi]v

where ρ is the average correlation coefficient. The inequality establishes the variance reduction rate.

Proof of Lemma 2 (Trend Elimination) For polynomial xt = tm, apply mathematical induction:

• Base case: ∆kt = k (constant) removes linear trend

• Inductive step: Assume ∆m
k tm = m!km. Then

∆m+1
k tm+1 = ∆k(∆

m
k tm+1)

= ∆k(m+ 1)kmt+ lower degree terms

= (m+ 1)km · k = (m+ 1)!km+1

Thus, m+ 1 differencing operations eliminate degree-m trends.

Proof of Proposition 3.3

Step 1: Error Decomposition From consensus fusion:

Ŷ −Y =
1

N + 1

N∑
k=0

(Ŷ(k) −Y) (10)

Apply triangle inequality:

∥Ŷ −Y∥ ≤ 1

N + 1

N∑
k=0

∥Ŷ(k) −Y∥ (11)

Step 2: Multiscale Error Analysis For k ≥ 1, expand using temporal alignment:

∥Ŷ(k) −Y∥ ≤ ∥∆̂kY −∆kY∥+ ∥Ŷ(k−1) −Y∥dk
(12)

≤ ϵk + 2−(k−1)Ebase (13)

where ∥ · ∥dk
denotes restriction to the dk-aligned temporal segment.
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Step 3: Recursive Error Propagation The geometric hierarchy induces telescoping summation:

N∑
k=1

ϵk ≤
√
N

(
N∑

k=1

ϵ2k

)1/2

(Cauchy-Schwarz) (14)

N∑
k=1

2−(k−1)Ebase ≤ 2Ebase (15)

Step 4: Final Composition Combining all terms:

∥Ŷ −Y∥ ≤ 1√
N

(
N∑

k=1

ϵ2k

)1/2

+

(
1 +

2

N + 1

)
Ebase (16)

Neglecting higher-order terms for N ≥ 3 gives the simplified bound.

Interpretation This proof reveals three key insights: 1. The 1√
N

factor emerges naturally from our geometric scaling 2.
Base prediction error Ebase sets the fundamental accuracy limit 3. Differential consistency terms ϵk quantify temporal pattern
preservation

The loss function L = 1
N

∑N
k=1 ϵ

2
k + E2base directly minimizes this upper bound, establishing theoretical coherence between

our method design and error control mechanism.
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